x^2-13=10-6x^2

Simple and best practice solution for x^2-13=10-6x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-13=10-6x^2 equation:



x^2-13=10-6x^2
We move all terms to the left:
x^2-13-(10-6x^2)=0
We get rid of parentheses
x^2+6x^2-10-13=0
We add all the numbers together, and all the variables
7x^2-23=0
a = 7; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·7·(-23)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{161}}{2*7}=\frac{0-2\sqrt{161}}{14} =-\frac{2\sqrt{161}}{14} =-\frac{\sqrt{161}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{161}}{2*7}=\frac{0+2\sqrt{161}}{14} =\frac{2\sqrt{161}}{14} =\frac{\sqrt{161}}{7} $

See similar equations:

| 5x+17=10-2x-3 | | 5-8y=6y+42 | | N+14=8n | | 4n-4n=4 | | |x-8|=-13 | | F(x)=(x^2+x-20)x=-2 | | -8r-3=-4r+5 | | 2x-3=5.3 | | 3x+6+4x-14=180 | | 18w=4 | | x^2–9=0 | | 3+5v=v+v | | 8{h-1}=6h+4+2h | | 0.75v-5=0.5v-3 | | 7x+-24=95 | | 4d=57-7 | | 3(2x-14)=-3(-13 | | 1-6m=-4m-1 | | 3x+-2=13 | | 3/5(10x−5)=27 | | 1/2y-(y-7/9)=1/18(Y-9) | | 8-y=36 | | 5x/2+11x-3=105 | | -34=n-14 | | 3(8k+12)=-3(4-10k) | | 13y=26=7y+22 | | 385/(x+1)=0 | | x²-2x=48 | | 2+3(y-2)=32 | | 1/2x/3/5=1/4x-2/3 | | 3x+3x+4x+8=180 | | -7(x-1)=7x-21 |

Equations solver categories